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 ABSTRACT

The results of an experimental evaluation of ablative materials suitable for the production of light weight, low
cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compo-
sitions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket
engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal
chamber pressure of 1138 kPa (165 psia) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to
thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approxi-
mately 2456 K (4420 °R). Two high-density composition materials exhibited high erosion resistance, while two low-
density compositions exhibited ~6-75 times lower average erosion resistance. The results compare favorably with
previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket
engines.

INTRODUCTION

The increasing demand for reliable, low-cost launches of small satellites (100-300 kg)(221-662 lbs) to equa-
torial or polar low-Earth orbit (LEO) has led to a number of design approaches for a low-cost propulsion system to
meet this demand. One approach includes the utilization of relatively inexpensive propellants such as RP-1 (processed
kerosene) fuel and liquid oxygen (LOX) in a low chamber pressure, pressure-fed engine, with an uncooled combustion
chamber and nozzle. The elimination of complex, high-pressure turbopumps, and avoidance of cryogenic fuels such as
liquid hydrogen or liquid methane, with insulated storage tanks and transfer lines, simplifies the entire system, thus
increasing reliability and lowering costs. The combination of RP-1 and LOX is also far more benign for the environ-
ment than conventional solid or hypergolic propellants.

References 1 and 2 identified plans for developing an orbital launch system consisting of a two-stage launch
vehicle capable of placing payloads of approximately 227 kg (500 lbs) to 340 kg (750 lbs) into polar or equatorial
LEOs. For simplicity and low cost, this system would utilize an existing off-the-shelf first-stage high thrust engine, and
a second-stage, low thrust rocket engine consistent with the above approach.  To address the desire for a low-cost, light-
weight, uncooled combustion chamber and nozzle, Lewis Research Center conducted a conceptual design and analysis
study of two RP-1/LOX propelled engines (one for sea-level testing and one for upper-stage operation) for this application.
Evaluation of design options, with the goals of simplicity and low cost, led to incorporating ablative materials to
fabricate part of the desired combustion chamber and nozzle.

Ablative materials are used extensively to provide sacrificial cooling (progressive endothermic decomposi-
tion of fiber-reinforced organic material and mass flow of pyrolysis gases away from the heated surface, blocking heat
flux to the outer surface) in a number of liquid and solid propellant rocket engine applications. The advantages of
ablative cooling include simplicity, reliability, ease of fabrication, and compatibility with deep throttling requirements.
Another major advantage is the elimination of the need for expensive, complex, regenerative engine cooling systems,
with high pressure pumps and tanks.

A preliminary survey was conducted of ablative materials, with emphasis on aerospace industry applications,
and it was determined that a number of available low cost materials could meet the design requirements which include:

• RP-1 and LOX Propellants
• Firing Duration = 265 seconds
• Chamber Pressure = 883 kPa (128 psia)
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In addition to previously tested and utilized materials (e.g. Fiberite MX2600), a number of new  light-weight
materials were considered for comparative evaluation. It was also determined (reference 3) that the rate of throat
erosion could be minimized by utilizing an engine design which incorporates a low O/F zone in the periphery of the
combustion gases, or “O/F Zoning”, thus creating a lower gas temperature adjacent to the chamber wall. Selection of
O/F zoning was based on two aspects. First, by selection of an O/F zone of 1.6, a cool combustion zone in the periphery
of the injector will create a temperature of approximately 2444 K (4400 °R) which should keep the erosion of the
ablative to a minimum without seriously affecting the overall engine performance (reference 4). Second, the velocity
difference between core flow and peripheral-zone flow is less in the case of O/F zoning than it is with film cooling, thus
minimizing the mixing between the two zones. Hence, one would expect better maintenance of the zone cooling
influence throughout the length of the chamber. Figure 1 (reference 3) shows the effect of peripheral-zone combustion
temperature on ablative throat erosion for a rocket engine with a throat diameter of 7.62 cm (3.0 in.) and operating at a
chamber pressure of 690 kPa (100 psia). As can be seen, the ablative erosion rate decreases almost linearly, and the
onset of erosion is delayed at the lower combustion temperatures.  That experimental effort utilized nitrogen tetroxide
and a blend of 50 percent unsymmetrical dimethyl-hydrazine and 50 percent hydrazine propellants. The current experi-
mental effort utilized an existing rocket engine chamber with a design throat diameter of 2.54 cm (1.0 in.) and operated
at a chamber pressure of 1138 kPa (165 psia) with gaseous hydrogen and oxygen propellants.

Erosion is also driven by the chamber pressure and gas velocity at the throat, which influence the heat transfer
coefficient and heat flux. Reference 5 shows that the heat transfer coefficient is directly proportional to the chamber
pressure and indirectly proportional to the throat diameter. Thus, the current experimental test results for the 2.54 cm
diameter throat sample should be conservative when applied to the larger diameter conceptual engine design.

This paper will cover the rationale behind the selection of the candidate materials for comparative evaluation;
the experimental test matrix selected; and the experimental test results leading to selection of a material for final
fabrication. Ten throat insert samples, comprised of four different silica cloth-reinforced/phenolic resin  compositions,
were tested. To evaluate the candidate materials at the desired operating conditions, testing was conducted using gas-
eous oxygen and hydrogen propellants at an overall nominal mixture ratio of 3.3 and nominal chamber pressure of
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Figure 1.—Effect of peripheral-zone combustion temperature on ablative throat erosion.
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1138 kPa (165 psia). This was intended to simulate the thermal conditions anticipated in the proposed design. Each test
firing was conducted for progressively longer durations, with measurements of the material sample throat diameter
taken after each run to determine the condition and to document the rate of material erosion and any fabric delamina-
tion for each sample. Comparisons are made for the apparent erosion (regression) rates, throat area increase, and the
rate of throat area increase for the different materials.

EXPERIMENT DESCRIPTION

APPARATUS

Figure 2 is a photograph of the test hardware in place in test cell 22 of the Rocket Lab, described in refer-
ence 6, at the Lewis Research Center. The hardware for testing the candidate materials included an injector, combus-
tion chamber barrel section, converging nozzle section, test sample, and a sample retaining plate, as shown in cross-
section in Figure 3, with the 2.54 cm (1.0 in.) throat diameter test sample in place. The 5.08 cm (2.0 in.) diameter
combustion chamber and convergent nozzle section were water-cooled with the sample held in place by an uncooled
stainless steel plate.

The test injector design incorporated a porous sintered wire mesh faceplate through which the hydrogen was
introduced and a number of small diameter oxygen injector tubes.  An augmented spark torch system was provided to
initiate combustion. The facility also included a water spray-cooled exhaust duct for handling the exhaust products; a
programmable logic controller to actuate the valves, control the run duration, and abort the firing if a problem occurs;
and a high-speed data acquisition system.

To simulate the conceptual engine’s designed combustion temperature of approximately 2444 K (4400 °R), a
theoretical performance analysis was conducted using the One Dimensional Equilibrium program (reference 7), based
on operating at a nominal chamber pressure of 150 psia. From this analysis the desired propellant flows were deter-
mined for initial testing.

Test
sample

Existing water
cooled
spoolpiece

Water out

Water
in

Figure 3.—Rocket engine cross section.

Water in

Support
plate

Figure 2.—Photograph of ablative test hardware.
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Figure 4.—Reference material—previous NASA testing. This table taken from
   reference 8.

MX-260031

(8 percent)
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TEST SAMPLES

The selection of candidate materials to be tested was based primarily on the documented performance of
existing materials, which included the rate of erosion (regression) and the “char through” caused by resin decomposi-
tion and flow of pyrolysis gases through the char layer. The availability and cost of possible materials was also consid-
ered during the selection process.

Based on an investigation of previously tested ablative materials (references 3 and 8 thru 15), shown in
Figure 4, and a review of the application of Fiberite MX2600 material (reference 16), as shown in Figure 5(a) and 5(b),
it was determined that a silica cloth-reinforced/phenolic resin composition should provide the ablative characteristics
desired for the conceptual engine application. Quartz cloth-reinforced/ phenolic resin compositions were considered
but determined to be prohibitively costly.

Finally, the investigation suggested that a cloth fabric orientation of 60° with respect to the chamber and
nozzle center line produced a lower level of erosion than other fabric orientations, as shown on Figure 6, (reference 8).

Four(4) candidates were selected for investigation of cost, availability, and performance characteristics. Two
materials (Fiberite MX-2600-LDC and MXS-385-LD) incorporated hollow microspheres in the phenolic resin to pro-
duce low-density compositions; one high-density composition (Fiberite MX-2600) included a silicon dioxide powder
filler in the resin; and the fourth was a proprietary (Utah Rocketry) silica cloth/phenolic resin composition, high-
density material. Table 1 shows the materials selected. The low-density compositions were included to provide the
possibility of a weight savings of approximately 40% for the final product. Figure 7 shows the dimensions of the test
samples with the desired cloth fabric orientation.

Silica fabric

Quartz fabric
tieply 32 places

Lightweight
needle felt
materialLock wrap

Lock

Detail B

Elastomeric
silica
fabric

Over wrap 70°
orientation

Lightweight
needle felt
material

Liner silica
fabric 60°
orientation

Inner layer silica
fabric convolay

Outer liner
lightweight
needle felt
material

Section A-A

A

A

B

CL

(b)

Liner

Heat
shield

Ablative
chamber
liner

Gimbal
mount

Titanium chamber
case

Ablative exit
cone liner

Heat
shield

Columbium
nozzle
extension

Gimbal ring
Ablative
face
plate

Heat shield

(a)

Figure 5.—TRW lunar module descent engine. (a) Thrust chamber assembly. (b) Lightweight chamber liner. (Reference 16).
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Figure 6.—Erosion vs. fabric orientation.

Nozzle
orientation

Solid symbols denote delamination

Nozzle composition,
percent

Supplier

1 ICI fiberite

2 ICI fiberite

3 ICI fiberite

4 Utah Rocketry

Designation

MX 2600

MX 2600 LDC

MXS 385 LD

“SIL/PHEN”
(NASA designation)

Composition

59-63% silica cloth
29-33% phenolic resin
~8% silica powder

45-51% silica cloth
30-36% phenolic resin
~9% ceramic microspheres

32-42% silica cloth
25-33% phenolic resin
33-35% filler (ceramic

microballoons & elastomer)

Proprietary

Density,
gm/cm3

1.72

1.1

.90

1.88

Remarks

High mold pressure
(1000 psi) laminate

Low mold pressure
(100 psi) laminate

Low mold pressure
(50 psi) laminate

New composition

TABLE 1.—ABLATIVE MATERIAL SAMPLES
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Figure 7.—Test sample cross section. (All dimensions in inches.)

2.600
diam

+.000
-.005

TEST PROCEDURE

The procedures used in this test program were established to obtain comparative, progressive erosion data at
a single operating condition for all selected ablative material samples. Figure 8 shows a sample data sheet (including
the matrix of run durations) utilized for recording dimensional and operating data for each run. These data were used to
monitor the amount of erosion of the sample and the degree to which the operating conditions (chamber pressure and
mixture ratio) remained constant. Each sample was measured with a digital, electronic bore gage prior to any hot firing,
to determine the initial throat diameter. The operating conditions for the combustion chamber, and the test firing
duration were programmed into the test controller prior to each test run, and all operation and data acquisition was fully
automatic from test initiation.

Following each hot firing, the sample throat was measured using the same bore gage and taking multiple
readings around the inside circumference of the throat. The condition of the test sample was evaluated visually, and
documented photographically. Each test run was also documented by high-speed photography and on videotape. The
most valuable observation after each test run was the visual inspection of the condition of each sample. This inspec-
tion, along with the diametral measurement, was used to determine whether or not to continue the test matrix. Using
this technique consistently by the same investigator during the test program permitted a reasonable comparison of the
characteristics of the selected materials. Figure 9 shows the condition of one sample of low-density MXS-385-LD
material, and illustrates the difficulty in obtaining the absolute correctness of the throat diameter after this test run. This
figure also shows the “streaking” (possibly caused by nonuniform flow in the oxygen tubes in the injector) of the
combustion products at the 7:00 and 10:00 o’clock positions (looking upstream) which contributed to the irregular
erosion pattern.

To more accurately document the change in the test sample throat diameter after the final hot firing, each
sample was mounted in a Computer Programmable Optical Comparator (Figure 10) and an average diameter was
determined from 20 readings around the inside circumference of the throat. These data were used to determine the final
throat area of each sample.
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Test
date

Run no. Sample
material

Run
duration (sec.)

Throat diameter (in.) Operating
parameters

4/20/95 34 1

3

10

30

60

60

.9984

35"

36"

37"

38"

39"

"

"

"

"

"

1.00355

1.00820
1.00725

1.01510
1.01240

1.0300
1.0129

1.0401
1.0156

1.00355

1.00820 max
1.00725 min

1.01510 max
1.01240 min

1.0300 max
1.0129 min

1.0401 max
1.0156 min

1.05355 max
1.02385 min

Pc = 163.7 psia
WO = .383
WF = .116

H

O/F = 3.30

Pc = 167.9 psia
WO = .394
WF = .118

H

O/F = 3.34

Pc = 161.3 psia
WO = .383
WF = .115

H

O/F = 3.33

Pc = 160.1 psia
WO = .385
WF = .116

H

O/F = 3.32

Pc = 159.1 psia
WO = .386
WF = .117

H

O/F = 3.30

Ablative sample - test results

Figure 8.—Sample data sheet.

U.R. SIL/PHEN
1

Pc = 174.0 psia
WO = .404
WF = .121

H

O/F = 3.34

Initial Post-run

1.0058 - Optical comparator data

Final throat gas temperature ≈ 4294 °R

Figure 9.—Photo of sample MXS385 - LD material after firing.
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Figure 10.—Optical measurement of test sample.

Test sample

The Post-Run diameters shown were the bore gage measurements mentioned earlier, and were used only for
preliminary determination of throat condition and approximate operating gas temperature.  As shown on Figure 8, the
final throat gas temperature for this series of runs was approximately 2386 K (4294 °R). All gas temperatures were
determined using techniques outlined in reference 7.  The average final gas temperature, for all test runs, was approx-
imately 2456 K (4420 °R). This condition was the result of higher chamber pressures and O/F’s than initially estab-
lished but was acceptable for the purpose of comparing the test samples. The temperature was held constant within
approximately +3% for all test runs.

The final analysis of the test data included the determination of the accumulated change in the throat diameter,
∆D (mm)(in.) from which the erosion, or regression rate, R (mm/sec or mil/sec), the throat area increase ∆A(%), the
rate of area increase, ∆A/T (%/sec), and the throat gas temperature could be determined.

Figure 11 shows a sample analysis sheet for sample U.R. SIL/PHEN 1 , where the results of the Optical
Comparator readings were used to determine the final change in throat diameter and area, and the rate of area increase.
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Sample material

MX2600  2
MX2600  3

MX2600-LDC  1
MX2600-LDC  2
MX2600-LDC  3

MXS385-LD  1
MXS385-LD  2

U.R. SIL/PHEN  1
U.R. SIL/PHEN  2
U.R. SIL/PHEN  3

RESULTS AND DISCUSSION

The objective of these tests was to evaluate the comparative erosion characteristics of several ablative mate-
rials at a specific operating condition for selection and application to the design of a new rocket engine. Table 2 shows
the matrix of comparative test results for the selected materials, which are summarized as follows:

Total test
time,

T,
sec

104
120

31
35
34

34
34

164
164
164

Change in
diameter,

∆D

mm

0.470
  .986

1.864
  .889
1.298

1.234
1.438

0.188
  .028
  .056

in.

0.0185
  .0388

0.0734
  .0350
  .0511

0.0486
  .0566

  .0074
  .0011
  .0022

mm/sec

0.452×10–2

  .822

6.013
2.54
3.818

3.629
4.229

0.115
  .017
  .034

Regression rate, R

mil/sec

0.178
  .323

2.368
1.00
1.503

1.429
1.665

0.045
  .007
  .013

Area
increase,

∆A,
percent

  3.74
  7.94

15.22
  7.12
10.47

  9.95
11.64

  1.49
    .22
    .44

Rate of area
increase,

∆A/T,
percent/sec

0.0360
       .066

     0.491
       .203
       .308

     0.293
       .342

     0.009
       .0013
       .0026

Average
combustion
temperature,

°R

4562
4338

4483
4579
4404

N/A
4442

4294
4308
4372

TABLE 2.—ABLATIVE MATERIAL TEST RESULTS

Notes:
1. All final results were based on measurements of effective diameter made on Optical Comparator.
2. All samples were subject to “streaking” of the combustion products within the test chamber, causing irregular

erosion of the ablative materials.
3. The configuration of the test chamber allowed the ablative samples to delaminate to some degree because of the

lack of support on the downstream side of the sample.

34

35

36

37

38

39

Duration,
sec

1

3

10

30

60

60

1

4

14

44

104

164

.00515

.00933

.01535

.02305

.02945

.0403

.00515

.00233

.00110

.000524

.000283

.000246

Run # Cum. duration,
T, (sec)

DD,
in.

DD/T,
in./sec

Erosion rate,
mil/sec

Figure 11.—Sample analysis sheet.

Analysis of Sample: U.R. Silica/Phenolic 1

(Tested 4/20/95)
Analysis of Change in Throat Area

A2
A1

D2

D1
2

D1 = .9984 in.

D2 = 1.0058 in. (average)

(1.0058)2

(.9984)2
=

1.01163

.996803
= 1.01488

A2
A1

~

[ A2 = 1.01488 A1

and 1.49%/164 sec =

0.009% per sec D A/T

=> 1.49% increase

5.15

2.33

1.10

.524

.283

.246

.0074 .000045 .045

2
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1. A low-cost, high-density composition of silica cloth and phenolic resin with a silicon dioxide powder filler
(Fiberite MX-2600), previously utilized for the Lunar Module descent engine, provided erosion resistance
acceptable for the intended application (~0.25 mil/sec).

2. Both of the low-density compositions eroded much more rapidly (~6-75 times) than the high-density com-
positions and exhibited a greater degree of delamination of the fabric layers.

3. A new high-density material of a proprietary silica cloth/phenolic resin composition provided the best
erosion resistance of the samples tested (~0.02 mil/sec). Figure 12(a) shows test sample U.R. SIL/PHEN  3
prior to test firing, and Figure 12(b) shows the same sample after 164 seconds accumulated operation.

4. The use of “inter-test” inspections provided a basis for whether or not to continue each test series, which
resulted in the variations in the total test times shown on Table 2. The shorter total test times for the low-
density materials resulted from these inspections, in which the rapid deterioration was evident. The longer
total test times for the U.R. SIL/PHEN samples were the results of the observation of lower deterioration,
allowing for longer duration testing.

5. The selection of the 60° fabric orientation in the samples resulted in erosion characteristics consistent with
earlier NASA investigations utilizing nitrogen tetroxide and a blend of 50-percent unsymmetrical
dimethyl-hydrazine and 50-percent hydrazine propellants. Figure 13 shows the comparison of the
current test data with the spread of previous data from reference 8.

6. Although the operating characterisitics of the test facility and the number of ablative material samples
were limited, the use of consistent data acquisition techniques provided sufficient data for comparison of
the erosion characteristics of these materials.

Figure 12.—(a) Photo of test sample U.R. SIL/PHEN  3  before firing. (b) Photo of test sample U.R. SIL/PHEN  3  after
   164 seconds of firing.

(a) (b)



12

As noted on Table 2, there were factors influencing the accuracy, on an absolute basis, of the test results. The
use of the Optical Comparator to determine the final throat diameter provided a more accurate measure than bore gage
readings for comparison purposes.  The final condition of the samples was further exacerbated by the lack of full
support on the downstream face of the sample, allowing some degree of delamination. This delamination generally
occurred in the areas where “streaking” was evident.

A final comparison of these materials, drawn from these results, shows that the high-density composition
materials are more desirable than the low-density materials for the proposed engine application, with a long duration
firing time (approximately 300 seconds).

CONCLUDING REMARKS

An investigation was conducted to evaluate the comparative erosion characteristics of silica cloth-reinforced/
phenolic resin materials for application to the combustion chamber and nozzle of a low-pressure liquid oxygen/RP-1
propelled rocket engine. A survey of possible candidate materials was conducted, yielding four different composition
(two low-density and two high-density) materials for further evaluation. Experimental testing was performed in an
existing test facility utilizing gaseous oxygen and hydrogen propellants at an O/F scheduled to simulate the thermal
environment of oxygen/RP-1. Results of this evaluation show that the high-density, silica cloth-reinforced/phenolic
resin composition materials tested will provide acceptable erosion characteristics for the intended application.
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Ablative Material Testing for Low-Pressure, Low-Cost Rocket Engines

The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket
engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica
cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion
chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of
1138 kPa (165 psia) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to  thermally simulate operation
with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 °R). Two
high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited ~6-75
times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide ad-
equate data for selection of ablatives for low pressure, low cost rocket engines.

Prepared for the 1995 32nd Combustion Subcommittee; Propulsion Systems Hazards Subcommittee, 22nd Exhaust Plume
Technology Subcommittee, and 4th SPIRITS User Group Joint Meeting, sponsored by Joint Army-Navy-NASA-Air Force,
Huntsville, Alabama, October 23–27, 1995. Responsible person, G. Paul Richter, organization code 5320, (216) 433–7537.

G. Paul Richter and Timothy D. Smith

Ablative materials; Erosion resistance; Silica-cloth Phenolic compositions


